Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens.

Identifieur interne : 001435 ( Main/Exploration ); précédent : 001434; suivant : 001436

Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens.

Auteurs : Mercedes Rivero [Argentine] ; Nicolás Furman ; Nicolás Mencacci ; Pablo Picca ; Laila Toum ; Ezequiel Lentz ; Fernando Bravo-Almonacid ; Alejandro Mentaberry

Source :

RBID : pubmed:22115953

Descripteurs français

English descriptors

Abstract

Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of dermaseptin-transformed plants with the AP24/lysozyme construction allowed selection of plants simultaneously expressing the three transgenes. Potato lines expressing individual transgenes or double- and triple-transgene combinations were assayed for resistance to Erwinia carotovora using whole-plant and tuber infection assays. Resistance levels for both infection tests compared consistently for most potato lines and allowed selection of highly resistant phenotypes. Higher resistance levels were found in lines carrying the dermaseptin and lysozyme sequences, indicating that theses proteins are the major contributors to antibacterial activity. Similar results were obtained in tuber infection tests conducted with Streptomyces scabies. Plant lines showing the higher resistance to bacterial infections were challenged with Phytophthora infestans, Rhizoctonia solani and Fusarium solani. Considerable levels of resistance to each of these pathogens were evidenced employing semi-quantitative tests based in detached-leaf inoculation, fungal growth inhibition and in vitro plant inoculation. On the basis of these results, we propose that stacking of these transgenes is a promising approach to achieve resistance to both bacterial and fungal pathogens.

DOI: 10.1016/j.jbiotec.2011.11.005
PubMed: 22115953


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens.</title>
<author>
<name sortKey="Rivero, Mercedes" sort="Rivero, Mercedes" uniqKey="Rivero M" first="Mercedes" last="Rivero">Mercedes Rivero</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires. Av. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina. mrivero@fbmc.fcen.uba.ar</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires. Av. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires</wicri:regionArea>
<wicri:noRegion>Buenos Aires</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Furman, Nicolas" sort="Furman, Nicolas" uniqKey="Furman N" first="Nicolás" last="Furman">Nicolás Furman</name>
</author>
<author>
<name sortKey="Mencacci, Nicolas" sort="Mencacci, Nicolas" uniqKey="Mencacci N" first="Nicolás" last="Mencacci">Nicolás Mencacci</name>
</author>
<author>
<name sortKey="Picca, Pablo" sort="Picca, Pablo" uniqKey="Picca P" first="Pablo" last="Picca">Pablo Picca</name>
</author>
<author>
<name sortKey="Toum, Laila" sort="Toum, Laila" uniqKey="Toum L" first="Laila" last="Toum">Laila Toum</name>
</author>
<author>
<name sortKey="Lentz, Ezequiel" sort="Lentz, Ezequiel" uniqKey="Lentz E" first="Ezequiel" last="Lentz">Ezequiel Lentz</name>
</author>
<author>
<name sortKey="Bravo Almonacid, Fernando" sort="Bravo Almonacid, Fernando" uniqKey="Bravo Almonacid F" first="Fernando" last="Bravo-Almonacid">Fernando Bravo-Almonacid</name>
</author>
<author>
<name sortKey="Mentaberry, Alejandro" sort="Mentaberry, Alejandro" uniqKey="Mentaberry A" first="Alejandro" last="Mentaberry">Alejandro Mentaberry</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22115953</idno>
<idno type="pmid">22115953</idno>
<idno type="doi">10.1016/j.jbiotec.2011.11.005</idno>
<idno type="wicri:Area/Main/Corpus">001596</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001596</idno>
<idno type="wicri:Area/Main/Curation">001596</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001596</idno>
<idno type="wicri:Area/Main/Exploration">001596</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens.</title>
<author>
<name sortKey="Rivero, Mercedes" sort="Rivero, Mercedes" uniqKey="Rivero M" first="Mercedes" last="Rivero">Mercedes Rivero</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires. Av. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina. mrivero@fbmc.fcen.uba.ar</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires. Av. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires</wicri:regionArea>
<wicri:noRegion>Buenos Aires</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Furman, Nicolas" sort="Furman, Nicolas" uniqKey="Furman N" first="Nicolás" last="Furman">Nicolás Furman</name>
</author>
<author>
<name sortKey="Mencacci, Nicolas" sort="Mencacci, Nicolas" uniqKey="Mencacci N" first="Nicolás" last="Mencacci">Nicolás Mencacci</name>
</author>
<author>
<name sortKey="Picca, Pablo" sort="Picca, Pablo" uniqKey="Picca P" first="Pablo" last="Picca">Pablo Picca</name>
</author>
<author>
<name sortKey="Toum, Laila" sort="Toum, Laila" uniqKey="Toum L" first="Laila" last="Toum">Laila Toum</name>
</author>
<author>
<name sortKey="Lentz, Ezequiel" sort="Lentz, Ezequiel" uniqKey="Lentz E" first="Ezequiel" last="Lentz">Ezequiel Lentz</name>
</author>
<author>
<name sortKey="Bravo Almonacid, Fernando" sort="Bravo Almonacid, Fernando" uniqKey="Bravo Almonacid F" first="Fernando" last="Bravo-Almonacid">Fernando Bravo-Almonacid</name>
</author>
<author>
<name sortKey="Mentaberry, Alejandro" sort="Mentaberry, Alejandro" uniqKey="Mentaberry A" first="Alejandro" last="Mentaberry">Alejandro Mentaberry</name>
</author>
</analytic>
<series>
<title level="j">Journal of biotechnology</title>
<idno type="eISSN">1873-4863</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amphibian Proteins (genetics)</term>
<term>Amphibian Proteins (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Antimicrobial Cationic Peptides (genetics)</term>
<term>Antimicrobial Cationic Peptides (metabolism)</term>
<term>Bacteria (genetics)</term>
<term>Chickens (genetics)</term>
<term>Fungi (genetics)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Muramidase (genetics)</term>
<term>Muramidase (metabolism)</term>
<term>Pectobacterium carotovorum (pathogenicity)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Solanum tuberosum (genetics)</term>
<term>Solanum tuberosum (microbiology)</term>
<term>Tobacco (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Bactéries (génétique)</term>
<term>Champignons (génétique)</term>
<term>Lysozyme (génétique)</term>
<term>Lysozyme (métabolisme)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Pectobacterium carotovorum (pathogénicité)</term>
<term>Peptides antimicrobiens cationiques (génétique)</term>
<term>Peptides antimicrobiens cationiques (métabolisme)</term>
<term>Poulets (génétique)</term>
<term>Protéines d'amphibien (génétique)</term>
<term>Protéines d'amphibien (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Solanum tuberosum (génétique)</term>
<term>Solanum tuberosum (microbiologie)</term>
<term>Tabac (génétique)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Amphibian Proteins</term>
<term>Antimicrobial Cationic Peptides</term>
<term>Muramidase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amphibian Proteins</term>
<term>Antimicrobial Cationic Peptides</term>
<term>Muramidase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria</term>
<term>Chickens</term>
<term>Fungi</term>
<term>Plant Diseases</term>
<term>Plants, Genetically Modified</term>
<term>Solanum tuberosum</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bactéries</term>
<term>Champignons</term>
<term>Lysozyme</term>
<term>Maladies des plantes</term>
<term>Peptides antimicrobiens cationiques</term>
<term>Poulets</term>
<term>Protéines d'amphibien</term>
<term>Protéines végétales</term>
<term>Solanum tuberosum</term>
<term>Tabac</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Lysozyme</term>
<term>Peptides antimicrobiens cationiques</term>
<term>Protéines d'amphibien</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Pectobacterium carotovorum</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Pectobacterium carotovorum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of dermaseptin-transformed plants with the AP24/lysozyme construction allowed selection of plants simultaneously expressing the three transgenes. Potato lines expressing individual transgenes or double- and triple-transgene combinations were assayed for resistance to Erwinia carotovora using whole-plant and tuber infection assays. Resistance levels for both infection tests compared consistently for most potato lines and allowed selection of highly resistant phenotypes. Higher resistance levels were found in lines carrying the dermaseptin and lysozyme sequences, indicating that theses proteins are the major contributors to antibacterial activity. Similar results were obtained in tuber infection tests conducted with Streptomyces scabies. Plant lines showing the higher resistance to bacterial infections were challenged with Phytophthora infestans, Rhizoctonia solani and Fusarium solani. Considerable levels of resistance to each of these pathogens were evidenced employing semi-quantitative tests based in detached-leaf inoculation, fungal growth inhibition and in vitro plant inoculation. On the basis of these results, we propose that stacking of these transgenes is a promising approach to achieve resistance to both bacterial and fungal pathogens.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22115953</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>05</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2012</Year>
<Month>01</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-4863</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>157</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jan</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Journal of biotechnology</Title>
<ISOAbbreviation>J Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens.</ArticleTitle>
<Pagination>
<MedlinePgn>334-43</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jbiotec.2011.11.005</ELocationID>
<Abstract>
<AbstractText>Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of dermaseptin-transformed plants with the AP24/lysozyme construction allowed selection of plants simultaneously expressing the three transgenes. Potato lines expressing individual transgenes or double- and triple-transgene combinations were assayed for resistance to Erwinia carotovora using whole-plant and tuber infection assays. Resistance levels for both infection tests compared consistently for most potato lines and allowed selection of highly resistant phenotypes. Higher resistance levels were found in lines carrying the dermaseptin and lysozyme sequences, indicating that theses proteins are the major contributors to antibacterial activity. Similar results were obtained in tuber infection tests conducted with Streptomyces scabies. Plant lines showing the higher resistance to bacterial infections were challenged with Phytophthora infestans, Rhizoctonia solani and Fusarium solani. Considerable levels of resistance to each of these pathogens were evidenced employing semi-quantitative tests based in detached-leaf inoculation, fungal growth inhibition and in vitro plant inoculation. On the basis of these results, we propose that stacking of these transgenes is a promising approach to achieve resistance to both bacterial and fungal pathogens.</AbstractText>
<CopyrightInformation>Copyright © 2011 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rivero</LastName>
<ForeName>Mercedes</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires. Av. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina. mrivero@fbmc.fcen.uba.ar</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Furman</LastName>
<ForeName>Nicolás</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mencacci</LastName>
<ForeName>Nicolás</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Picca</LastName>
<ForeName>Pablo</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Toum</LastName>
<ForeName>Laila</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lentz</LastName>
<ForeName>Ezequiel</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bravo-Almonacid</LastName>
<ForeName>Fernando</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mentaberry</LastName>
<ForeName>Alejandro</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>11</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>J Biotechnol</MedlineTA>
<NlmUniqueID>8411927</NlmUniqueID>
<ISSNLinking>0168-1656</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029845">Amphibian Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D023181">Antimicrobial Cationic Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>136212-91-4</RegistryNumber>
<NameOfSubstance UI="C070905">dermaseptin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142583-51-5</RegistryNumber>
<NameOfSubstance UI="C073139">osmotin protein, Nicotiana tabacum</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.17</RegistryNumber>
<NameOfSubstance UI="D009113">Muramidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029845" MajorTopicYN="N">Amphibian Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023181" MajorTopicYN="N">Antimicrobial Cationic Peptides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002645" MajorTopicYN="N">Chickens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009113" MajorTopicYN="N">Muramidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016973" MajorTopicYN="N">Pectobacterium carotovorum</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>10</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>11</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22115953</ArticleId>
<ArticleId IdType="pii">S0168-1656(11)00639-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.jbiotec.2011.11.005</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Argentine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bravo Almonacid, Fernando" sort="Bravo Almonacid, Fernando" uniqKey="Bravo Almonacid F" first="Fernando" last="Bravo-Almonacid">Fernando Bravo-Almonacid</name>
<name sortKey="Furman, Nicolas" sort="Furman, Nicolas" uniqKey="Furman N" first="Nicolás" last="Furman">Nicolás Furman</name>
<name sortKey="Lentz, Ezequiel" sort="Lentz, Ezequiel" uniqKey="Lentz E" first="Ezequiel" last="Lentz">Ezequiel Lentz</name>
<name sortKey="Mencacci, Nicolas" sort="Mencacci, Nicolas" uniqKey="Mencacci N" first="Nicolás" last="Mencacci">Nicolás Mencacci</name>
<name sortKey="Mentaberry, Alejandro" sort="Mentaberry, Alejandro" uniqKey="Mentaberry A" first="Alejandro" last="Mentaberry">Alejandro Mentaberry</name>
<name sortKey="Picca, Pablo" sort="Picca, Pablo" uniqKey="Picca P" first="Pablo" last="Picca">Pablo Picca</name>
<name sortKey="Toum, Laila" sort="Toum, Laila" uniqKey="Toum L" first="Laila" last="Toum">Laila Toum</name>
</noCountry>
<country name="Argentine">
<noRegion>
<name sortKey="Rivero, Mercedes" sort="Rivero, Mercedes" uniqKey="Rivero M" first="Mercedes" last="Rivero">Mercedes Rivero</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001435 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001435 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22115953
   |texte=   Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22115953" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024